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We report a measurement of the tf production cross section using the CDF II detector at the
Fermilab Tevatron. The analysis is performed using 311 pb™! of pj collisions at /s = 1.96 TeV. The
data consist of events selected with six or more hadronic jets with additional kinematic requirements.
At least one of these jets must be identified as a b-quark jet by the reconstruction of a secondary
vertex. The cross section is measured to be oyy = 7.5 2.1(stat.) "33 (syst.) T35 (lumi.) pb, which is

consistent with the standard model prediction.

PACS numbers: 14.65.Ha, 13.85.Ni,13.85.Qk

I. INTRODUCTION predicted to be g7 annihilation to tt. The top quark
decays immediately into a W boson and a b quark al-
most 100% of the time. The W boson subsequently

At the Tevatron, the dominant standard model decays to either a pair of quarks or a lepton-neutrino

mechanism for top quark production in pp collisions is



pair. The measurement of the tf cross section tests the
QCD calculations for the pair production of a mas-
sive color triplet. These calculations have been per-
formed in perturbation theory at the next-to-leading
order[1]. Recent work on corrections for soft gluon
emission show that their effect on the cross section
is small, and that they reduce the theoretical uncer-
tainty due to the choice of renormalization and fac-
torization scale. The total theoretical uncertainty is
approximately 15%. At /s = 1.96 TeV, the predicted
tt production cross section is 6.1 pb for a top mass of
178 GeV/c?, the average value of the Run I measure-
ments [2].

In this analysis, we examine events with an all-
hadronic final state characterized by a six-jet topol-
ogy. In the standard model top decay, this final state
has the advantage of a large branching ratio of 4/9
and of being fully reconstructed. The major draw-
back is that it competes against a very large QCD
multi-jet background which dominates the signal by
three orders of magnitude after the application of
the online trigger selection. To improve the signal-
to-background ratio, a set of requirements based on
the kinematic and topological characteristics of stan-
dard model tt events is applied to the data. In order
to extract the ¢ signal, we select those jets identi-
fied as originating from b quarks using a secondary
vertex b-tagging algorithm, thus reaching a signal-
to-background ratio of about 1/5. The CDF and
D@ collaborations previously measured the tf pro-
duction cross section in the all-hadronic channel [3]
using datasets with integrated luminosities of approx-
imately 110pb~! collected at /s = 1.8 TeV during
Run I of the Fermilab Tevatron Collider. The results
reported here are based on the data taken with the
CDF 1II detector between March 2002 and Septem-
ber 2004, corresponding to an integrated luminosity
of 311 pb~!. This measurement complements other
recent tt cross section determinations by CDF in Run
IT using dilepton [4] and lepton-plus-jets events [5-8].
The organization of the paper is as follows. SectionIT
contains a brief description of the CDFII detector.
The trigger and the sample selections are described in
Section IIT along with the acceptance associated with
the optimized kinematic selection. The b-tagging algo-
rithm and its efficiency for tagging b jets are described
in SectionIV. In Section V the method for estimating
the background from multi-jet processes is applied to
the data and the related systematic uncertainties are
evaluated. The #t production cross section measured
in events with at least one b-tagged jet after the kine-
matic selection is presented in Section VI and the final
result is summarized in Section VII.

II. THE CDF II DETECTOR

The CDFII detector[9] is an azimuthally and
forward-backward symmetric apparatus designed to

study pp collisions at the Fermilab Tevatron. It uses
a cylindrical coordinate system as described in [10].
It consists of a magnetic spectrometer surrounded by
calorimeters and muon detectors. The charged par-
ticle tracking system is immersed in a 1.4 T mag-
netic field parallel to the p and p beams. A set of
silicon microstrip detectors provide charged particle
tracking in the radial range from 1.5 to 28 cm. A
3.1 m long open-cell drift chamber, the central outer
tracker (COT), covers the radial range from 40 to 137
cm. The COT provides up to 96 measurements of the
track position with alternating axial and +2°-stereo
superlayers of 12-wire layers each. The fiducial re-
gion of the silicon detector extends to pseudorapidity
[n| < 2, while the COT provides coverage for |n| < 1.
Segmented electromagnetic and hadronic calorimeters
surround the tracking system and measure the en-
ergy of interacting particles. The electromagnetic and
hadronic calorimeters are lead-scintillator and iron-
scintillator sampling devices, respectively, covering
the range |n| < 3.6. They are segmented in the cen-
tral region (|n| < 1.1) in towers of 15° in azimuth and
0.1 in 7, and the forward region (1.1 < |p| < 3.6) in
towers of 7.5° for |n| < 2.11 and 15° for |n| > 2.11.
The electromagnetic calorimeters[11, 12] are instru-
mented with proportional and scintillating strip de-
tectors that measure the transverse profile of electro-
magnetic showers at a depth corresponding to the ex-
pected shower maximum. The measured energy reso-
lution for electrons in the electromagnetic calorimeters
are 14%/+/Er in the central and 16%/v/E7r ® 1%in
the forward[14] where the units of Er are GeV. We
also measure the single-particle (pion) energy resolu-
tion in the hadronic calorimeters to be 75%/+/Er for
the central and 80%+/Er @ 5% for the forward de-
tector [14]. Jets are identified as a group of electro-
magnetic and hadronic calorimeter clusters which fall
within a cone of radius AR = \/A¢? + An?2 < 0.4[15].
Drift chambers located outside the central hadronic
calorimeters and behind a 60 cm iron shield detect
muons with |n| < 0.6[16]. Additional drift chambers
and scintillation counters detect muons in the region
0.6 < |n| < 1.5. Gas Cherenkov counters with a cov-
erage of 3.7 < |n| < 4.7 measure the average number
of inelastic pp collisions and thereby determine the
luminosity [17].

III. MULTI-JET EVENT SELECTION

The all-hadronic final state of ¢ events is character-
ized by the presence of at least six-hadronic jets from
the decay of the two top quarks. A multi-jet trig-
ger relying on calorimetric information was specially
developed to collect the events used in this analysis.
After a preliminary selection of well contained and
well reconstructed multi-jet events, tight kinematic re-
quirements are imposed to reach a reasonable signal-
to-background ratio.



A. Multi-Jet Trigger Levels

CDF uses a three-level trigger system, the first two
consisting of special purpose electronics and the third
level consisting of conventional computer processors.
For triggering purposes the calorimeter granularity is
simplified to a 24 x 24 grid in 7, ¢ space and each
trigger tower spans approximately 15° in ¢ and 0.2 in
1 covering one or two physical towers. At level 1, a
single trigger tower is required with E7 > 10 GeV,
while at level 2 we require that the total transverse
energy, summed over all the trigger towers, > Er be
> 125 GeV and the presence of four or more clusters
each with transverse energy Fr > 15 GeV. Finally,
the third trigger level confirms the level 2 selection
using more accurate determination of the jet energy,
requiring four or more reconstructed jets with Ep >
10 GeV. This trigger rate corresponds to an effective
cross section of about 14 nb and an efficiency of about
63% for all tt events, and of about 85% in the case of
all-hadronic tf decays. The signal-to-background ratio
(S/B) for tt events after this selection is about 1/3500
(assuming o7 = 6.1 pb).

B. Preselection Requirements

After full-event reconstruction, we retain only those
events that are well contained in the detector. We
require the primary event vertex [5] to be well recon-
structed and to lie inside the luminous region (|z| <
60 cm). Jets are identified using a fixed-cone algo-
rithm with a cone radius of 0.4 in n— ¢ space. The jet
energies are corrected [18] for detector response and
multiple interactions. First, we take into account de-
tector response variations in 7, detector stability, and
energy loss in the uninstrumented regions. After a
small correction for the extra energy deposited by mul-
tiple collisions in the same accelerator bunch crossing,
a correction for calorimeter non-linearity is applied so
that the jet energies correspond to the most proba-
ble in-cone hadronic energy. Each of these steps has
an individual systematic uncertainty that is added in
quadrature to derive the total uncertainty which de-
creases from 8 to 3% with increasing jet energy. After
these corrections the jet energy provides a good esti-
mate of the initial parton energy. This can be verified
comparing the jet energy to the energy of an elec-
tromagnetic object such as a prompt photon or a Z
boson produced in the same event. For this analysis,
jets are required to have Er > 15 GeV and || < 2
after all corrections have been applied. We define the
signal region by selecting events with a number of jets
6 < Njets < 8 in order to optimize the signal frac-
tion. In order to minimize the contamination of this
sample from the ¢ leptonic channels, we veto events
containing any well identified high-pr electrons and

muons as defined in [6] and require that _Er be
VY Br

< 3v/GeV [19], where the Er [20] is corrected for both
the momentum of any identified muons and the posi-
tion of the pp collision point and the Y Er is obtained
by summing the Ep’s of all the selected jets. After
these requirements 364,006 events are selected for fur-
ther analysis.

C. Kinematic Selection Optimization and
Acceptance

We define a kinematic selection based on dynam-
ical and topological properties of the event. Quan-
tities used are the number of jets, Njets, the total
transverse energy of the jets, Z; E7, and the quantity

sEBr = Y Er — Ep' — Ep?, obtained by remov-
ing the contribution of the two jets with the high-
est Er from the total ) Er. Other discrimimant
variables considered are the centrality C, defined as

C= %, where V/3 is related to the energy of the
hard scattering process; and the aplanarity A, defined
as A = %Ql, Q; being the smallest of the three nor-
malized eigenvalues of the sphericity tensor M,, =
>_; PjaPjy calculated in the centre-of-mass system of
all jets, where P; is the jet momentum. In order to
model the signal we use PYTHIA v6.2[21] and HER-
WIG v6.4[22] leading-order Monte Carlo generators
with parton showering followed by a simulation of the
CDF II detector. The reference top mass chosen for
the optimization is myep, = 178 GeV/cz. The back-
ground behavior is obtained from the multi-jet data
events: this is possible since the signal fraction at the
initial stage is very small, ~ 4% at most. Comparisons
of the background-dominated data and Monte Carlo
generated signal events for the chosen kinematic vari-
ables are shown in Fig. 1.

The kinematic selection is optimized for the max-
imum signal significance for tt events, defined as the
ratio between the expected signal and the statisti-
cal uncertainty on the sum of signal and background.
The values for the cuts after optimization are: A +
0.005% 5 Ex > 0.96,C > 0.78,and ) Er > 280 GeV.
Such a selection yields 3315 candidate events in the
data with an efficiency of 6.7 + 1.4% for the tt signal
and with a signal-to-background ratio S/B ~ 1/25.

The effect of the selection on the inclusive sample of
tt events is summarized in Table I. The relative contri-
bution from the leptonic channels after all the cuts is
small, about 4%. The distribution of the data events
as a function of jet multiplicity is shown in Table II.
Note that the requirement of the multi-jet trigger cou-
pled with those of the kinematic selection modify the
monotonically falling multiplicity spectrum of QCD
background production processes.

The systematic uncertainties affecting the tt accep-
tance are summarized in Table III. The systematic
uncertainty of 19.4% arising from the jet energy scale
is dominant, since this analysis requires the presence
of a large number of jets in the event which are used
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FIG. 1: Kinematic variable distributions in multi-jet data
and ¢t Monte Carlo simulation. From top: ) Er, cen-
trality, and A+40.005x 23 E7. The lines represent the
optimized selection cut. All histograms are normalized to
unity.

TABLE I: Acceptance of the kinematic selection mea-
sured from PYTHIA tt Monte Carlo simulation for
Miop=178 GeV/c2 and number of events selected in data.

Quantity Acceptance (%)  Data
Trigger 63 4249644
Pre-selection 42 3845744
6 < Nijets < 8 23 364006
A+0.005>; Er > 0.96 9.5 9425
C >0.78 6.9 3880
> Er > 280GeV 6.7 3315

TABLE II: The number of events before and after kine-
matic selection for different jet multiplicities

Jet Events before Events after
Multiplicity kinematic selection kinematic selection
4 1540858 101
5 854266 695
6 282521 1369
7 68317 1300
8 13168 646

to build the set of kinematic variables employed in the
selection. We also study the effects on the efficiency of
different Monte Carlo physics generation schemes, ini-
tial and final state radiation ISR/FSR, and the vari-
ation of parton distribution functions PDFs within
their uncertainties.

TABLE III: Relative systematic uncertainties on the signal
acceptance.

Quantity Relative error (%)
Energy Scale 19.4
PDF 2.6
ISR/FSR 4.2
Monte Carlo Modeling 1.7
Total 20.1

IV. b-TAGGING IN THE MULTI-JET
SAMPLE

In order to further improve the signal-to-
background ratio, we exploit the heavy flavor con-
tent of tt events using a b-tagging algorithm based on
secondary vertex reconstruction as described in detail
in [5, 23]. The algorithm identifies jets containing a b-
hadron state by reconstructing its decay vertex with
at least two good quality tracks with hits in the silicon
vertex detector. A b-tagged jet must have an associ-
ated secondary vertex with a displacement from the
primary vertex in the transverse plane with a signifi-
cance larger than 7.5, where the typical resolution of
the vertex displacement is about 190 um. The effi-
ciency to tag real b quarks and the average number of
tags per event, n{y?, the quantities used in the cross
section calculation, are measured in t¢ Monte Carlo
events after the complete kinematic selection. The
method we use takes into account the different tag-
ging efficiencies for jets coming from the fragmenta-
tion of b-, ¢-, or light-flavored quarks. The rates for
all possible combinations of heavy- and light-flavored
jets in the events are measured and used to properly
combine the different efficiencies. This is particularly
important in the case of all-hadronic ¢ decays since we
find that about 44% of the events after the kinematic



seclection contain a charm quark from a W boson in a
top decay and 17% of the events contain two charmed
quarks. In Table IV we summarize the heavy flavor
fractions in t¢ Monte Carlo events after kinematic se-
lection. The efficiency calculation includes the cor-
rection factors 0.91 + 0.06 for b jets and 0.91 + 0.12
for ¢ jets respectively. These factors account for the
different efficiency measured in data and Monte Carlo
events; their measurement is described in detail in [5].

We find that the average number of tags present in
a tt event after kinematic selection is niys = 0.846 +
0.073. The systematic uncertainty is dominated by
the uncertainty of the data to Monte Carlo correction
factors for tagging b and c¢ jets, where the uncertainties
on both factors are considered fully correlated.

TABLE IV: Heavy flavor fractions (%) for £ Monte Carlo
events after kinematic selection.

jet-Er, the number of tracks reconstructed in the ver-
tex detector, N, and the number of primary vertices
in the event, Nye¢. The tag rates per jet as a function
of these variables are shown in Fig. 2.

]
f

m4++*+++++ +

Ol b b b bovn Lo b Ly
20 40 60 80 100 120 140 160

Jet Et (GeV)

Number
of ¢ jets
Number
of b jets

0 0.11+0.01 0.18+0.02 0.08£0.01
1 3.62+0.07 5.95+0.09 2.37+0.06
2 27.53£0.17 43.37£0.19 16.80 £ 0.14

V. BACKGROUND ESTIMATE

The background sources for this final state are due
mainly to QCD production of heavy-quark pairs (bb
and c€) and false tags from light-quark jets. Other
standard model processes such as W/Z+jets can be
neglected due to the smaller production cross section
and small acceptance due to the selection cuts.

Given the theoretical uncertainties related to the
production cross section for the generation of N-
parton events, it is important to have a method for
the background estimate that does not require any
Monte Carlo information, and thus, is based solely on
data. The method we use is based on the assumption
that even if the relative contribution from different
processes changes as a function of jet multiplicity, the
probability that a fiducial jet, that is a jet with two
good quality tracks in the silicon detector, is tagged
is approximately constant with increasing multiplic-
ity. This assumption allows us to use the tag rate ex-
tracted from events depleted in #f signal as a measure
of the tag rate in events with higher jet multiplicity.
The depleted events are taken to be those with exactly
four jets.

The tag rate per jet is evaluated in this Njets = 4
sample and is parameterized in terms of variables sen-
sitive to both the efficiency for true heavy-flavored
objects and the rate of false tags. These variables are
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FIG. 2: Tag rate for fiducial jets as a function of jet Er,
Nk and Nyert.

This tag rate matrix is then used to estimate the
probability that a given fiducial jet in the signal sam-
ple is tagged. Summing this probability over all fidu-
cial jets, we obtain the expected number of tags from
non-signal processes, that is QCD heavy and light-
flavored production. Before the kinematic selection,
the multi-jet sample is composed essentially of back-
ground events. The goodness of the parameterization
and the goodness of the resulting estimate for differ-
ent jet multiplicities is shown in Fig. 3. The remaining
small discrepancy of 2.1% observed at high jet multi-
plicity is accounted for as a systematic uncertainty on
the background estimate.

The kinematic selection also changes the event char-
acteristics with respect to those found in the sample
with exactly four jets, where the parametrization has
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FIG. 3: Average number of tags per event observed in the
multi-jet sample before kinematic selection compared with
the estimate from the tag rate parametrization.

been derived. This selection modifies the jet-Er and
7 spectra so that the average tag rate per event for
jets from QCD background becomes higher. However,
the parametrization of the tag probability in terms of
properties of the jet (Er, and Ng) is shown to de-
scribe well this increase for the kinematic selection.
Possible biases due to the selection are treated as sys-
tematic uncertainties on the background prediction
with the help of different control samples depleted
in signal contribution. A specific control sample is
defined for extracting the systematic uncertainty on
the background determination due to each kinematic
variable. The control sample is obtained by applying
the (N — 1) kinematic selection cuts, and reversing
the selection requirement on the chosen variable un-
der study. For instance, in the case of the system-
atic error due to the ) Ep requirement, we apply
the standard cuts on all other variables, and addi-
tionally require Y Er < 280 GeV. With this method
we measure a relative systematic uncertainty of 4.1%
on the background estimate due to the kinematic se-
lection by summing in quadrature the uncertainties
obtained separately for each kinematic variable. The
contributions from running conditions, such as instan-
taneous luminosity and detector configuration, have
been studied and found to be negligible. After the
application of the kinematic selection to a multi-jet
sample of 311pb~! we are left with 3315 events with
6 < Njets < 8 in which there are 816 tags in 695
events. The distribution of observed tags and events
for the different jet multiplicities is shown in Table V.

After kinematic selection, the expected background
is 717 £ 29 tags. However, since this background es-
timate is obtained from all the events passing the se-
lection before tagging we need to subtract the contri-
bution due to the tf events. This amount is derived

with an iterative procedure using the ¢ cross section
from the data, that is the observed excess divided by
the average number of tags. After this correction, the
number of tags expected from background sources is
reduced to to 683.7 + 37.5 tags.

S
o
o

Tagged Jets
w
3

e

200

>

150

Hi

100
L4 Data

Backgroundt 1o
50

Background + Expected tt

| | | | |

4 5 6 7 8
Number of Jets

FIG. 4: Number of tags observed in multi-jet data af-
ter kinematic selection compared with the expected back-
ground. The tt expectation refers to the measured cross
section of 7.5 pb.

VI. CROSS-SECTION MEASUREMENT

The excess of the observed data over the back-
ground in the signal region shown in Table V is as-
cribed to tt production. A measurement of the cross
section can be extracted from the acceptance and the
background estimate:

P Nobs - kag
- )
t T en X niag X Lint

where Nops = 816 and Nz = 684+38 are the number
of total observed and background tags, respectively, in
the signal region 6 < Njets < 8, €xin = 6.7 £ 1.4% is
the signal kinematic selection efficiency shown in Ta-
ble I, ngyg = 0.846 & 0.073 is the average number of
tags in tf events and Liy = 311 £ 18 pb~! is the inte-
grated luminosity. The value of the ¢t cross section is:
o7 = 7.5+2.1(stat.)t5 3 (syst.) T0: (lumi.) pb for a top
mass of 178 GeV/c?. In Fig. 4 the distribution of the
number of observed tags and background is compared
to the tt signal expectation assuming the production
cross section measured in this analysis.

The cross section is also measured for different top
quark mass assumptions as shown in Table VI. In
the same table are reported the kinematic efficiency
and the relative systematic uncertainty due to the jet



TABLE V: Observed number of tags and expected background and signal after the kinematic selection.

Only one

cumulative value is given for the corrected background in 6 < Nje; < 8 because the iterative correction is applied to all

the entries in the signal region.

Jet Multiplicity 4 5 6 7 8
Background 18.27 £ 0.55 139.6 £ 5.8|283.5 £ 11.7 284.9 £ 11.7 148.8 £ 6.1
Corrected Background 17.6 +0.3 133.4+7.8 683.7 £37.5
tt (o = 6.1 pb) 0.5+£01 14.7+£32|529+11.6 393+86 13.8+3.0
Data 20 154 346 322 148

energy scale. The dependence of the average number
of tags on my,p has been found to be negligible.

TABLE VI: Kinematic selection efficiency, relative system-
atic uncertainty from jet energy scale (JES), and measured
cross section for different top quark mass assumptions.

Miop (GeV/c?) €xin(%) JES Syst.(%) o(pb)

165 5.1+1.1 22.1 9.9M50

170 58+ 1.1 21.2 8.7t%1

175 63+1.3 201  8.0+52

180 6.9+1.3 18.8 7.3+%0

185 7.6+1.3 17.1 6.6157
VII. CONCLUSIONS

Using an optimized kinematic selection and a b-jet-
identification technique, we are able to improve the
S/B of the initial multi-jet sample obtained with a
dedicated trigger from 1/3500 to 1/5. With the se-
lected sample, we measure the production cross sec-
tion for ## events in the all-hadronic final state to
be o, = 7.5 % 2.1(stat.) 53 (syst.) 9 (lumi.) pb as-
suming meep = 178 GeV/c?. These results agree well
with the standard model expectation of o 5 = 6.1pb
for the same value of the top mass and with the re-
sults obtained in the leptonic channels. The current
all-hadronic measurement is dominated by systematic
uncertainties. The increase in integrated luminosity

we expect from Run IT will not only reduce the statis-
tical uncertainty but will also allow for a more strin-
gent selection with a better signal-to-background ra-
tio. In particular the application of strategies based on
neural network selection and the requirement of two
identified b-quark jets per event can help to achieve a
signal-to-background ratio of about 1/1 and a signifi-
cant reduction in the systematic uncertainty.
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